alexa Assessment of influential range and characteristics of fugitive dust in limestone extraction processes.


Internal Medicine: Open Access

Author(s): Chang CT

Abstract Share this page

Abstract Fugitive dust emission from limestone extraction areas is a significant pollution source. The cracking operation in limestone extraction areas easily causes high total suspended particulate (TSP) concentrations in the atmosphere, occasionally exceeding the 1-hr national emission standard of Taiwan (500 microg/m3). The concentration and size distribution were measured at different distances (0.05-15 km) in the extraction areas. The highest hourly concentrations of TSP, PM10 (suspended particulate matter [PM] smaller than 10 microm), and PM2.5 (suspended PM smaller than 2.5 microm) are 1111, 825, and 236 microg/m3, respectively, during the cracking process. Measurement results obtained from the Micro-Orifice Uniform Deposit Impactor indicated that the mass median aerodynamic diameter is approximately 0.7 microm, with the geometric standard deviation exceeding 7. In addition, the emission factors are 0.143 and 0.211 kg/t for both vertical well and stair extraction operations, respectively. Experimental results demonstrate that the corresponding TSP control efficiencies for spraying water, planting grass, setting short walls, paving gravel roads, and establishing vertical well transportation are approximately 55, 50, 44, 22, and 30\%, respectively. Furthermore, the PM10 control efficiencies are approximately 45, 41, 54, 35, and 30\%, respectively, whereas the PM2.5 control efficiencies are roughly 23, 31, 15, 11, and 10\%, individually.
This article was published in J Air Waste Manag Assoc and referenced in Internal Medicine: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version