alexa Assessment of the myogenic stem cell compartment following transplantation of Pax3 Pax7-induced embryonic stem cell-derived progenitors
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Radbod Darabi, Filipe N C Santos, Michael A Rudnicki, Antonio Filareto Weihong Pan

Abstract Share this page

An effective long-term cell therapy for skeletal muscle regeneration requires donor contribution to both muscle fibers and the muscle stem cell pool. Although satellite cells have these abilities, their therapeutic potential so far has been limited due to their scarcity in adult muscle. Myogenic progenitors obtained from Pax3-engineered mouse embryonic stem (ES) cells have the ability to generate myofibers and to improve the contractility of transplanted muscles in vivo, however, whether these cells contribute to the muscle stem cell pool and are able to self-renew in vivo are still unknown. Here, we addressed this question by investigating the ability of Pax3, which plays a critical role in embryonic muscle formation, and Pax7, which is important for maintenance of the muscle satellite cell pool, to promote the derivation of self-renewing functional myogenic progenitors from ES cells. We show that Pax7, like Pax3, can drive the expansion of an ES-derived myogenic progenitor with significant muscle regenerative potential. We further demonstrate that a fraction of transplanted cells remains mononuclear, and displays key features of skeletal muscle stem cells, including satellite cell localization, response to reinjury, and contribution to muscle regeneration in secondary transplantation assays. The ability to engraft, self-renew, and respond to injury provide foundation for the future therapeutic application of ES-derived myogenic progenitors in muscle disorders.

This article was published in Stem Cells and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords