alexa Astrometry and geodesy with radio interferometry: experiments, models, results


Journal of Astrophysics & Aerospace Technology

Author(s): Ojars J Sovers, John L Fanselow, Christopher S Jacobs

Abstract Share this page

Interferometry at radio frequencies between Earth-based receivers separated by intercontinental distances has made significant contributions to astrometry and geophysics during the past three decades. Analyses of such Very Long Baseline Interferometric (VLBI) experiments now permit measurements of relative positions of points on the Earth’s surface, and angles between celestial objects, at the levels of better than 1 cm and 1 nanoradian, respectively. The relative angular positions of extragalactic radio sources inferred from this technique presently form the best realization of an inertial reference frame. This review summarizes the current status of radio interferometric measurements for astrometric and geodetic applications. It emphasizes the theoretical models that are required to extract results from the VLBI observables at present accuracy levels. An unusually broad cross-section of physics contributes to the required modeling. Both special and general relativity need to be considered in properly formulating the geometric part of the propagation delay. While high-altitude atmospheric charged particle (ionospheric) effects are easily calibrated for measurements employing two well separated frequencies, the contribution of the neutral atmosphere at lower altitudes is more difficult to remove. In fact, mismodeling of the troposphere remains the dominant error source. Plate tectonic motions of the observing stations need to be taken into account, as well as the non-point-like intensity distributions of many sources. Numerous small periodic and quasi-periodic tidal effects also make important contributions to space geodetic observables at the centimeter level, and some of these are just beginning to be characterized. Another area of current rapid advances is the specification of the orientation of the Earth’s spin axis in inertial space: nutation and precession. Highlights of the achievements of VLBI are presented in four areas: reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity. The order-of-magnitude improvement of accuracy that was achieved during the last decade has provided essential input to geophysical models of the Earth’s internal structure. Most aspects of VLBI modeling are also directly applicable to interpretation of other space geodetic measurements, such as active and passive ranging to Earth-orbiting satellites, interplanetary spacecraft, and the Moon.

  • To read the full article Visit
  • Open Access
This article was published in The Astrophysical Journal and referenced in Journal of Astrophysics & Aerospace Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version