alexa Asymptotic stability of nonlinear discrete dynamical systems involving (sp) matrix


Journal of Applied & Computational Mathematics

Author(s): RK George TP Shah

Abstract Share this page

In this paper, we prove a new result for the exponential stability of the null solution of a nonlinear non-autonomous discrete dynamical system described by $$x(n+1)= g(n, x(n)) \qquad n = 0,1,2,...$$ where $g:Z^{+}\times \Omega \rightarrow \Omega$, $\Omega \subset R^k$ is a continuous nonlinear function satisfying $g(n, 0) = 0 \hspace{2mm} \forall n $, using the concept of (sp) matrix introduced by Xue and Guo. Numerical examples are also given to illustrate our result.

  • To read the full article Visit
  • Subscription
This article was published in Nonlinear Studies and referenced in Journal of Applied & Computational Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version