alexa ATF5 is a highly abundant liver-enriched transcription factor that cooperates with constitutive androstane receptor in the transactivation of CYP2B6: implications in hepatic stress responses.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Pascual M, GmezLechn MJ, Castell JV, Jover R

Abstract Share this page

Abstract Activating transcription factor (ATF) 5 is a member of the ATF/cAMP response element-binding protein family, which has been associated with differentiation, proliferation, and survival in several tissues and cell types. However, its role in the liver has not yet been investigated. We show herein that ATF5 is a highly abundant liver-enriched transcription factor (LETF) whose expression declines in correlation with the level of dedifferentiation in cultured human hepatocytes and cell lines. Re-expression of ATF5 in human HepG2 cells by adenoviral transduction resulted in a marked selective up-regulation of CYP2B6. Moreover, adenoviral cotransfection of ATF5 and constitutive androstane receptor (CAR) caused an additive increase in CYP2B6 mRNA. These results were confirmed in cultured human hepatocytes, where the cooperation of ATF5 and CAR not only increased CYP2B6 basal expression but also enhanced the induced levels after phenobarbital or 6-(4-chloropheny-l)-imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). Comparative sequence analysis of ATF5 and ATF4, its closest homolog, showed a large conservation of the mRNA 5'-untranslated region organization, suggesting that ATF5 might be up-regulated by stress responses through a very similar translational mechanism. To investigate this possibility, we induced endoplasmic reticulum stress by means of amino acid limitation or selective chemicals, and assessed the time course response of ATF5 and CYP2B6. We found a post-transcriptional up-regulation of ATF5 and a parallel induction of CYP2B6 mRNA. Our findings uncover a new LETF coupled to the differentiated hepatic phenotype that cooperates with CAR in the regulation of drug-metabolizing CYP2B6 in the liver. Moreover, ATF5 and its target gene CYP2B6 are induced under different stress conditions, suggesting a new potential mechanism to adapt hepatic cytochrome P450 expression to diverse endobiotic/xenobiotic harmful stress. This article was published in Drug Metab Dispos and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords