alexa Atomic complexity measures in position and momentum spaces.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Theoretical and Computational Science

Author(s): Angulo JC, Antoln J

Abstract Share this page

Abstract Fisher-Shannon (FS) and Lopez-Ruiz, Mancini, and Calbet (LMC) complexity measures, detecting not only randomness but also structure, are computed by using near Hartree-Fock wave functions for neutral atoms with nuclear charge Z=1-103 in position, momentum, and product spaces. It is shown that FS and LMC complexities are qualitatively and numerically equivalent for these systems. New complexity candidates are defined, computed, and compared by using the following information-theoretic magnitudes: Shannon entropy, Fisher information, disequilibrium, and variance. Localization-delocalization planes are constructed for each complexity measure, where the subshell pattern of the periodic table is clearly shown. The complementary use of r and p spaces provides a compact and more complete understanding of the information content of these planes. This article was published in J Chem Phys and referenced in Journal of Theoretical and Computational Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords