alexa Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Wu X, Whitfield LR, Stewart BH

Abstract Share this page

Abstract PURPOSE: The purpose of this study was to elucidate the mechanisms by which an HMG-CoA reductase inhibitor, atorvastatin (an organic acid with a pKa of 4.46), was transported in the secretory and absorptive directions across Caco-2 cell monolayers. METHODS: Caco-2 cells were grown on polycarbonate membrane inserts in 6-well Snapwell plates (Costar). The permeability of radiolabeled compounds across Caco-2 cell monolayers was determined using a side-by-side diffusion apparatus (NaviCyte) and an automated liquid handler (Hamilton Microlab 2200). The apical uptake of 14C-atorvastatin was also determined in Caco-2 cells. Cyclosporin A (20 microM) was present in the uptake media to block potential P-glycoprotein-mediated atorvastatin efflux. RESULTS: Polarized permeation of atorvastatin was observed with the basolateral-to-apical (B-to-A) permeability being 7-fold greater than the A-to-B permeability (35.6 x 10(-6) and 4.9 x 10(-6) cm/s, respectively). The secretion of atorvastatin was a saturable process with an apparent Km of 115 microM. The B-to-A permeability of atorvastatin was significantly reduced by cyclosporin A (10 microM), verapamil (100 microM), and a P-glycoprotein specific monoclonal antibody, UIC2(10 microg/ml) (43\%, 25\%, and 13\%, respectively). Furthermore, both CsA and verapamil significantly increased the A-to-B permeability of atorvastatin by 60\%; however, UIC2 did not affect the A-to-B permeability of atorvastatin. CsA uncompetitively inhibited the B-to-A flux of atorvastatin with a Ki of 5 microM. In addition, atorvastatin (100 microM) significantly inhibited the B-to-A permeability of vinblastine by 61\%. The apical uptake of atorvastatin increased 10.5-fold when the apical pH decreased from pH 7.4 to pH 5.5 while the pH in the basolateral side was fixed at pH 7.4. A proton ionophore, carbonylcyanide p-trifluoro-methoxyphenylhydrazone (FCCP) significantly decreased atorvastatin uptake. In addition, atorvastatin uptake was significantly inhibited by benzoic acid, nicotinic acid, and acetic acid each at 20 mM (65\%, 14\%, and 40\%, respectively). Benzoic acid competitively inhibited atorvastatin uptake with a Ki of 14 mM. Similarly, benzoic acid, nicotinic acid, and acetic acid significantly, inhibited the A-to-B permeability of atorvastatin by 71\%, 21\%, and 66\%, respectively. CONCLUSION: This study demonstrated that atorvastatin was secreted across the apical surface of Caco-2 cell monolayers via P-glycoprotein-mediated efflux and transported across the apical membrane in the absorptive direction via a H(+)-monocarboxylic acid cotransporter (MCT). In addition, this study provided the first evidence that negatively charged compounds, such as atorvastatin, can be a substrate for P-glycoprotein.
This article was published in Pharm Res and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords