alexa Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Sheffield VC, Cox DR, Lerman LS, Myers RM

Abstract Share this page

Abstract Denaturing gradient gel electrophoresis (DGGE) can be used to distinguish two DNA molecules that differ by as little as a single-base substitution. This method detects approximately 50\% of all possible single-base changes in DNA fragments ranging from 50 to approximately 1000 base pairs. To increase the number of single-base changes that can be distinguished by DGGE, we used the polymerase chain reaction to attach a 40-base-pair G + C-rich sequence, designated a GC-clamp, to one end of amplified DNA fragments that encompass regions of the mouse and human beta-globin genes. We show that this GC-clamp allows the detection of mutations, including the hemoglobin sickle (HbS) and hemoglobin C (HbC) mutations within the human beta-globin gene, that were previously indistinguishable by DGGE. In addition to providing an easy way to attach a GC-clamp to genomic DNA fragments, the polymerase chain reaction technique greatly increases the sensitivity of DGGE. With this approach, DNA fragments derived from less than 5 ng of human genomic DNA can be detected by ethidium bromide staining of the gel, obviating the need for radioactive probes. These improvements extend the applicability of DGGE for the detection of polymorphisms and mutations in genomic and cloned DNA.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords