alexa Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J,

Abstract Share this page

Abstract PURPOSE: To characterize the reactions of retinal glial cells (astrocytes and Müller cells) to retinal injury in mice that lack glial fibrillary acidic protein (GFAP) and vimentin (GFAP-/-Vim-/-) and to determine the role of glial cells in retinal detachment (RD)-induced photoreceptor degeneration. METHODS: RD was induced by subretinal injection of sodium hyaluronate in adult wild-type (WT) and GFAP-/-Vim-/- mice. Astroglial reaction and subsequent monocyte recruitment were quantified by measuring extracellular signal-regulated kinase (Erk) and c-fos activation and the level of expression of chemokine monocyte chemoattractant protein (MCP)-1 and by counting monocytes/microglia in the detached retinas. Immunohistochemistry, immunoblotting, real-time quantitative polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) were used. RD-induced photoreceptor degeneration was assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and measurement of outer nuclear layer (ONL) thickness. RESULTS: RD-induced reactive gliosis, characterized by GFAP and vimentin upregulation, Erk and c-fos activation, MCP-1 induction, and increased monocyte recruitment in WT mice. Absence of GFAP and vimentin effectively attenuated reactive responses of retinal glial cells and monocyte infiltration. As a result, detached retinas of GFAP-/-Vim-/- mice exhibited significantly reduced numbers of TUNEL-positive photoreceptor cells and increased ONL thickness compared with those of WT mice. CONCLUSIONS: The absence of GFAP and vimentin attenuates RD-induced reactive gliosis and, subsequently, limits photoreceptor degeneration. Results of this study indicate that reactive retinal glial cells contribute critically to retinal damage induced by RD and provide a new avenue for limiting photoreceptor degeneration associated with RD and other retinal diseases or damage.
This article was published in Invest Ophthalmol Vis Sci and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords