alexa Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Falanga V

Abstract Share this page

The nonhematopoietic component of bone marrow includes multipotent mesenchymal stem cells (MSC) capable of differentiating into fat, bone, muscle, cartilage, and endothelium. In this report, we describe the cell culture and characterization, delivery system, and successful use of topically applied autologous MSC to accelerate the healing of human and experimental murine wounds. A single bone marrow aspirate of 35-50 mL was obtained from patients with acute wounds (n = 5) from skin cancer surgery and from patients with chronic, long-standing, nonhealing lower extremity wounds (n = 8). Cells were grown in vitro under conditions favoring the propagation of MSC, and flow cytometry and immunostaining showed a profile (CD29+, CD44+, CD105+, CD166+, CD34-, CD45-) highly consistent with published reports of human MSC. Functional induction studies confirmed that the MSC could differentiate into bone, cartilage, and adipose tissue. The cultured autologous MSC were applied up to four times to the wounds using a fibrin polymer spray system with a double-barreled syringe. Both fibrinogen (containing the MSC) and thrombin were diluted to optimally deliver a polymerized gel that immediately adhered to the wound, without run-off, and yet allowing the MSC to remain viable and migrate from the gel. Sequential adjacent sections from biopsy specimens of the wound bed after MSC application showed elongated spindle cells, similar to their in vitro counterparts, which immunostained for MSC markers. Generation of new elastic fibers was evident by both special stains and antibodies to human elastin. The application of cultured cells was safe, without treatment-related adverse events. A strong direct correlation was found between the number of cells applied (greater than 1 x 10(6) cells per cm2 of wound area) and the subsequent decrease in chronic wound size (p = 0.0058). Topical application of autologous MSC also stimulated closure of full-thickness wounds in diabetic mice (db/db). Tracking of green fluorescent protein (GFP)+ MSC in mouse wounds showed GFP+ blood vessels, suggesting that the applied cells may persist as well as act to stimulate the wound repair process. These findings indicate that autologous bone marrow-derived MSC can be safely and effectively delivered to wounds using a fibrin spray system.

This article was published in Tissue Eng and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords