alexa Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI.


Internal Medicine: Open Access

Author(s): Kullberg J, Ahlstrm H, Johansson L, Frimmel H, Kullberg J, Ahlstrm H, Johansson L, Frimmel H

Abstract Share this page

Abstract OBJECTIVES: (1) To develop a fully automated algorithm for segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), excluding intermuscular adipose tissue (IMAT) and bone marrow (BM), from axial abdominal magnetic resonance imaging (MRI) data. (2) To evaluate the algorithm accuracy and total method reproducibility using a semi-automatically segmented reference and data from repeated measurements. BACKGROUND: MRI is a widely used in adipose tissue (AT) assessment. Manual analysis of MRI data is time consuming and biased by the operator. Automated analysis spares resources and increase reproducibility. Fully automated algorithms have been presented. However, reproducibility analysis has not been performed nor has methods for exclusion of IMAT and BM been presented. METHODS: In total, 49 data sets from 31 subjects were acquired using a clinical 1.5 T MRI scanner. Thirteen data sets were used in the derivation of the automated algorithm and 36 were used in the validation. Common image analysis tools such as thresholding, morphological operations and geometrical models were used to segment VAT and SAT. Accuracy was assessed using a semi-automatically created reference. Reproducibility was assessed from repeated measurements. RESULTS: Resulting AT volumes from the automated analysis and the reference were not found to differ significantly (2.0+/-14\% and 0.84+/-2.7\%, given as mean+/-s.d., for VAT and SAT, respectively). The automated analysis of the repeated measurements data significantly increased the reproducibility of the VAT measurements. One athletic subject with very small amounts of AT was considered to be an outlier. CONCLUSIONS: An automated method for segmentation of VAT and SAT and exclusion of IMAT and BM from abdominal MRI data has been reported. The accuracy and reproducibility of the method has also been demonstrated using a semi-automatically segmented reference and analysis of repeated acquisitions. The accuracy of the method is limited in lean subjects. This article was published in Int J Obes (Lond) and referenced in Internal Medicine: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version