alexa Automatically detecting problem list omissions of type 2 diabetes cases using electronic medical records.


Internal Medicine: Open Access

Author(s): Pacheco JA, Thompson W, Kho A

Abstract Share this page

Abstract As part of a large-scale project to use DNA biorepositories linked with electronic medical record (EMR) data for research, we developed and validated an algorithm to identify type 2 diabetes cases in the EMR. Though the algorithm was originally created to support clinical research, we have subsequently re-applied it to determine if it could also be used to identify problem list gaps. We examined the problem lists of the cases that the algorithm identified in order to determine if a structured code for diabetes was present. We found that only just over half of patients identified by the algorithm had a corresponding structured code entered in their problem list. We analyze characteristics of this patient population and identify possible reasons for the problem list omissions. We conclude that application of such algorithms to the EMR can improve the quality of the problem list, thereby supporting satisfaction of Meaningful Use guidelines.
This article was published in AMIA Annu Symp Proc and referenced in Internal Medicine: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version