alexa B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes.


Journal of Clinical & Cellular Immunology

Author(s): Tekle C, Nygren MK, Chen YW, Dybsjord I, Nesland JM,

Abstract Share this page

Abstract B7-H3, an immunoregulatory protein, is known to play a role in tumor progression. In many cancer types, observed correlations between high B7-H3 expression and poor prognosis have been attributed to involvement in antitumor immunity. However, here we demonstrate a nonimmunological alternative function of B7-H3 in cancer metastasis. Since advanced malignant melanoma is a disease with a poor survival rate and a broad pattern of metastasis, we used this disease as a model in our studies. We found that shRNA silencing of B7-H3 reduced the in vitro migratory potential and matrigel invasiveness of MDA-MB-435 and FEMX-I melanoma cells. In an experimental metastasis model in vivo, B7-H3 silencing of MDA-MB-435 cells resulted in reduced metastatic capacity and significantly increased the median symptom-free survival of nude mice (147 vs. 65 days, p < 0.001) and rats (53 vs. 42 days, p = 0.025) injected with MDA-MB-435 cells. Furthermore, a smaller fraction of mice had microscopically detectable metastases compared to control animals, and the pattern of metastases was slightly different between the two groups but with the brain as the predominant organ. Immunohistochemistry on samples from two melanoma patients showed strong B7-H3 staining in both a primary tumor and metastases. Notably, the metastasis-associated proteins, matrix metalloproteinase (MMP)-2, signal transducer and activator of transcription 3 (Stat3), and the level of secreted interleukin-8 (IL-8) were reduced in the B7-H3 knock-down cell variants, whereas tissue inhibitor of metalloproteinase (TIMP)-1 and-2 levels were increased. Taken together, our findings indicate a novel role for B7-H3 in the regulation of the metastatic capacity of melanoma cells and it might be a potential therapeutic target for anti-metastasis therapy. Copyright © 2011 UICC. This article was published in Int J Cancer and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version