alexa Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: Coupling between ion mobility, electrolysis, and acid-base equilibria.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Persat A, Suss ME, Santiago JG

Abstract Share this page

Abstract We present elements of electrolyte dynamics and electrochemistry relevant to microfluidic electrokinetics experiments. In Part I of this two-paper series, we presented a review and introduction to the fundamentals of acid-base chemistry. Here, we first summarize the coupling between acid-base equilibrium chemistry and electrophoretic mobilities of electrolytes, at both infinite and finite dilution. We then discuss the effects of electrode reactions on microfluidic electrokinetic experiments and derive a model for pH changes in microchip reservoirs during typical direct-current electrokinetic experiments. We present a model for the potential drop in typical microchip electrophoresis device. The latter includes finite element simulation to estimate the relative effects of channel and reservoir dimensions. Finally, we summarize effects of electrode and electrolyte characteristics on potential drop in microfluidic devices. As a whole, the discussions highlight the importance of the coupling between electromigration and electrophoresis, acid-base equilibria, and electrochemical reactions. This article was published in Lab Chip and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords