alexa Bayesian automatic relevance determination algorithms for classifying gene expression data.


Advancements in Genetic Engineering

Author(s): Li Y, Campbell C, Tipping M

Abstract Share this page

Abstract MOTIVATION: We investigate two new Bayesian classification algorithms incorporating feature selection. These algorithms are applied to the classification of gene expression data derived from cDNA microarrays. RESULTS: We demonstrate the effectiveness of the algorithms on three gene expression datasets for cancer, showing they compare well with alternative kernel-based techniques. By automatically incorporating feature selection, accurate classifiers can be constructed utilizing very few features and with minimal hand-tuning. We argue that the feature selection is meaningful and some of the highlighted genes appear to be medically important.
This article was published in Bioinformatics and referenced in Advancements in Genetic Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Conference on Epigenetics 2017
    November 13-15, 2017 Frankfurt, Germany
  • International Conference on Genetic Counseling and Genomic Medicine
    February 12-13, 2018 Madrid, Spain

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version