alexa Bayesian finite Markov mixture model for temporal multi-tissue polygenic patterns.


Journal of Biometrics & Biostatistics

Author(s): Liang Y, Kelemen A

Abstract Share this page

Abstract Finite mixture models can provide the insights about behavioral patterns as a source of heterogeneity of the various dynamics of time course gene expression data by reducing the high dimensionality and making clear the major components of the underlying structure of the data in terms of the unobservable latent variables. The latent structure of the dynamic transition process of gene expression changes over time can be represented by Markov processes. This paper addresses key problems in the analysis of large gene expression data sets that describe systemic temporal response cascades and dynamic changes to therapeutic doses in multiple tissues, such as liver, skeletal muscle, and kidney from the same animals. Bayesian Finite Markov Mixture Model with a Dirichlet Prior is developed for the identifications of differentially expressed time related genes and dynamic clusters. Deviance information criterion is applied to determine the number of components for model comparisons and selections. The proposed Bayesian models are applied to multiple tissue polygenetic temporal gene expression data and compared to a Bayesian model-based clustering method, named CAGED. Results show that our proposed Bayesian Finite Markov Mixture model can well capture the dynamic changes and patterns for irregular complex temporal data. 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This article was published in Biom J and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version