alexa Bayesian state space models for inferring and predicting temporal gene expression profiles.


Journal of Biometrics & Biostatistics

Author(s): Liang Y, Kelemen A

Abstract Share this page

Abstract Prediction of gene dynamic behavior is a challenging and important problem in genomic research while estimating the temporal correlations and non-stationarity are the keys in this process. Unfortunately, most existing techniques used for the inclusion of the temporal correlations treat the time course as evenly distributed time intervals and use stationary models with time-invariant settings. This is an assumption that is often violated in microarray time course data since the time course expression data are at unequal time points, where the difference in sampling times varies from minutes to days. Furthermore, the unevenly spaced short time courses with sudden changes make the prediction of genetic dynamics difficult. In this paper, we develop two types of Bayesian state space models to tackle this challenge for inferring and predicting the gene expression profiles associated with diseases. In the univariate time-varying Bayesian state space models we treat both the stochastic transition matrix and the observation matrix time-variant with linear setting and point out that this can easily be extended to nonlinear setting. In the multivariate Bayesian state space model we include temporal correlation structures in the covariance matrix estimations. In both models, the unevenly spaced short time courses with unseen time points are treated as hidden state variables. Bayesian approaches with various prior and hyper-prior models with MCMC algorithms are used to estimate the model parameters and hidden variables. We apply our models to multiple tissue polygenetic affymetrix data sets. Results show that the predictions of the genomic dynamic behavior can be well captured by the proposed models. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim This article was published in Biom J and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version