alexa BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury.
Engineering

Engineering

Advances in Robotics & Automation

Author(s): Lu P, Jones LL, Tuszynski MH

Abstract Share this page

Abstract Bone marrow stromal cells (MSCs) constitute a heterogeneous cell layer in the bone marrow, supporting the growth and differentiation of hematopoietic stem cells. Recently, it has been reported that MSCs harbor pluripotent stem cells capable of neural differentiation and that simple treatment of MSCs with chemical inducing agents leads to their rapid transdifferentiation into neural cells. We examined whether native or neurally induced MSCs would reconstitute an axonal growth-promoting milieu after cervical spinal cord injury (SCI), and whether such cells could act as vehicles of growth factor gene delivery to further augment axonal growth. One month after grafting to cystic sites of SCI, native MSCs supported modest growth of host sensory and motor axons. Cells "neurally" induced in vitro did not sustain a neural phenotype in vivo and supported host axonal growth to a degree equal to native MSCs. Transduction of MSCs to overexpress brain-derived neurotrophic factor (BDNF) resulted in a significant increase in the extent and diversity of host axonal growth, enhancing the growth of host serotonergic, coerulospinal, and dorsal column sensory axons. Measurement of neurotrophin production from implanted cells in the lesion site revealed that the grafts naturally contain nerve growth factor (NGF) and neurotrophin-3 (NT-3), and that transduction with BDNF markedly raises levels of BDNF production. Despite the extensive nature of host axonal penetration into the lesion site, functional recovery was not observed on a tape removal or rope-walking task. Thus, MSCs can support host axonal growth after spinal cord injury and are suitable cell types for ex vivo gene delivery. Combination therapy with other experimental approaches will likely be required to achieve axonal growth beyond the lesion site and functional recovery. This article was published in Exp Neurol and referenced in Advances in Robotics & Automation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords