alexa Beta-amyloid binds to p57NTR and activates NFkappaB in human neuroblastoma cells.


Journal of Alzheimers Disease & Parkinsonism

Author(s): Kuner P, Schubenel R, Hertel C

Abstract Share this page

Abstract Amyloid beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP), is a major component of the plaques found in the brain of Alzheimer's disease (AD) patients. These plaques are thought to cause the observed loss of cholinergic neurons in the basal forebrain of AD patients. In these neurons, particularly those of the nucleus basalis of Meynert, an up-regulation of 75kD-neurotrophin receptor (p75NTR), a nonselective neurotrophin receptor belonging to the death receptor family, has been reported. p75NTR expression has been described to correlate with beta-amyloid sensitivity in vivo and in vitro, suggesting a possible role for p75NTR as a receptor for Abeta. Here we used a human neuroblastoma cell line to investigate the involvement of p75NTR in Abeta-induced cell death. Abeta peptides were found to bind to p75NTR resulting in activation of NFKB in a time- and dose-dependent manner. Blocking the interaction of Abeta with p75NTR using NGF or inhibition of NFKB activation by curcumin or NFKB SN50 attenuated or abolished Abeta-induced apoptotic cell death. The present results suggest that p75NTR might be a death receptor for Abeta, thus being a possible drug target for treatment of AD. This article was published in J Neurosci Res and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version