alexa Beta-arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes.
Clinical Sciences

Clinical Sciences

Cardiovascular Pharmacology: Open Access

Author(s): Rajagopal K, Whalen EJ, Violin JD, Stiber JA, Rosenberg PB, , Rajagopal K, Whalen EJ, Violin JD, Stiber JA, Rosenberg PB,

Abstract Share this page

Abstract The G protein-coupled receptor kinases (GRKs) and beta-arrestins, families of molecules essential to the desensitization of G protein-dependent signaling via seven-transmembrane receptors (7TMRs), have been recently shown to also transduce G protein-independent signals from receptors. However, the physiologic consequences of this G protein-independent, GRK/beta-arrestin-dependent signaling are largely unknown. Here, we establish that GRK/beta-arrestin-mediated signal transduction via the angiotensin II (ANG) type 1A receptor (AT(1A)R) results in positive inotropic and lusitropic effects in isolated adult mouse cardiomyocytes. We used the "biased" AT(1A)R agonist [Sar(1), Ile(4), Ile(8)]-angiotensin II (SII), which is unable to stimulate G(alpha)q-mediated signaling, but which has previously been shown to promote beta-arrestin interaction with the AT(1A)R. Cardiomyocytes from WT, but not AT(1A)R-deficient knockout (KO) mice, exhibited positive inotropic and lusitropic responses to both ANG and SII. Responses of WT cardiomyocytes to ANG were dramatically reduced by protein kinase C (PKC) inhibition, whereas those to SII were unaffected. In contrast, cardiomyocytes from beta-arrestin2 KO and GRK6 KO mice failed to respond to SII, but displayed preserved responses to ANG. Cardiomyocytes from GRK2 heterozygous knockout mice (GRK2(+/-)) exhibited augmented responses to SII in comparison to ANG, whereas those from GRK5 KO mice did not differ from those from WT mice. These findings indicate the existence of independent G(alpha)q/PKC- and GRK6/beta-arrestin2-dependent mechanisms by which stimulation of the AT(1A)R can modulate cardiomyocyte function, and which can be differentially activated by selective receptor ligands. Such ligands may have potential as a novel class of therapeutic agents.
This article was published in Proc Natl Acad Sci U S A and referenced in Cardiovascular Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords