alexa Beta-cell deficit due to increased apoptosis in the human islet amyloid polypeptide transgenic (HIP) rat recapitulates the metabolic defects present in type 2 diabetes.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Matveyenko AV, Butler PC

Abstract Share this page

Abstract Type 2 diabetes is characterized by defects in insulin secretion and action and is preceded by impaired fasting glucose (IFG). The islet anatomy in IFG and type 2 diabetes reveals an approximately 50 and 65\% deficit in beta-cell mass, with increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Defects in insulin action include both hepatic and extrahepatic insulin resistance. The relationship between changes in beta-cell mass, beta-cell function, and insulin action leading to type 2 diabetes are unresolved, in part because it is not possible to measure beta-cell mass in vivo, and most available animal models do not recapitulate the islet pathology in type 2 diabetes. We evaluated the HIP rat, a human IAPP transgenic rat model that develops islet pathology comparable to humans with type 2 diabetes, at age 2 months (nondiabetic), 5 months (with IFG), and 10 months (with diabetes) to prospectively examine the relationship between changes in islet morphology versus insulin secretion and action. We report that increased beta-cell apoptosis and impaired first-phase insulin secretion precede the development of IFG, which coincides with an approximately 50\% defect in beta-cell mass and onset of hepatic insulin resistance. Diabetes was characterized by approximately 70\% deficit in beta-cell mass, progressive hepatic and extrahepatic insulin resistance, and hyperglucagonemia. We conclude that IAPP-induced beta-cell apoptosis causes defects in insulin secretion and beta-cell mass that lead first to hepatic insulin resistance and IFG and then to extrahepatic insulin resistance, hyperglucagonemia, and diabetes. We conclude that a specific beta-cell defect can recapitulate the metabolic phenotype of type 2 diabetes and note that insulin resistance in type 2 diabetes may at least in part be secondary to beta-cell failure. This article was published in Diabetes and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords