alexa Beta-lactamase-mediated resistance and opportunities for its control.


Journal of Biometrics & Biostatistics

Author(s): Livermore DM

Abstract Share this page

Abstract Clinical use of beta-lactams has selected for beta-lactamase-producing organisms. Numerous beta-lactamases are known, and sequencing allows them to be divided into four Classes, A to D, with Classes A and C being the most important. Pharmaceutical chemists have responded to the spread of beta-lactamase-producing organisms by developing stable agents and inhibitors. Stability in penicillins and cephalosporins is achieved by attaching a bulky substituent to the amino group of 6-aminopenicillanic acid or 7-aminocephalosporanic acid, or by replacing the hydrogen on carbon 6 (penicillins) or 7 (cephalosporins) with an alpha-methoxy group. In carbapenems, stability is achieved by incorporation of a simple trans-6-hydroxyethyl group. Beta-lactamase-inhibitory activity occurs in many beta-lactam classes but only clavams and penicillanic acid sulphones have been developed specifically as beta-lactamase inhibitors. These inhibit most Class A and some Class D enzymes but act poorly against Class B and C enzymes. Their success is affected by the amount of enzyme, the permeability of the bacterial cell wall, the partner beta-lactam and the pH. Piperacillin/tazobactam, which combines a good inhibitor of Class A enzymes with a broad-spectrum, easily-protected penicillin, has wide activity against common pathogens, the major exceptions being strains of Enterobacter, Serratia and Citrobacter freundii that produce large amounts of Class C enzymes, and Gram-positive cocci with modified penicillin-binding proteins. Beta-lactamase-stable beta-lactams and inhibitor combinations overcome many existing resistance mechanisms but are themselves selecting new resistances. Few new beta-lactams able to overcome these resistances are advanced in development and consequently the opportunities for control lie mostly in the more prudent use of compounds already available.
This article was published in J Antimicrob Chemother and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version