alexa Bilateral Loudness Balancing and Distorted Spatial Perception in Recipients of Bilateral Cochlear Implants.


Otolaryngology: Open Access

Author(s): Fitzgerald MB, Kan A, Goupell MJ

Abstract Share this page

Abstract OBJECTIVE: To determine whether bilateral loudness balancing during mapping of bilateral cochlear implants (CIs) produces fused, punctate, and centered auditory images that facilitate lateralization with stimulation on single-electrode pairs. DESIGN: Adopting procedures similar to those that are practiced clinically, direct stimulation was used to obtain most-comfortable levels (C levels) in recipients of bilateral CIs. Three pairs of electrodes, located in the base, middle, and apex of the electrode array, were tested. These electrode pairs were loudness-balanced by playing right-left electrode pairs sequentially. In experiment 1, the authors measured the location, number, and compactness of auditory images in 11 participants in a subjective fusion experiment. In experiment 2, the authors measured the location and number of the auditory images while imposing a range of interaural level differences (ILDs) in 13 participants in a lateralization experiment. Six of these participants repeated the mapping process and lateralization experiment over three separate days to determine the variability in the procedure. RESULTS: In approximately 80\% of instances, bilateral loudness balancing was achieved from relatively small adjustments to the C levels (≤3 clinical current units). More important, however, was the observation that in 4 of 11 participants, simultaneous bilateral stimulation regularly elicited percepts that were not fused into a single auditory object. Across all participants, approximately 23\% of percepts were not perceived as fused; this contrasts with the 1 to 2\% incidence of diplacusis observed with normal-hearing individuals. In addition to the unfused images, the perceived location was often offset from the physical ILD. On the whole, only 45\% of percepts presented with an ILD of 0 clinical current units were perceived as fused and heard in the center of the head. Taken together, these results suggest that distortions to the spatial map remain common in bilateral CI recipients even after careful bilateral loudness balancing. CONCLUSIONS: The primary conclusion from these experiments is that, even after bilateral loudness balancing, bilateral CI recipients still regularly perceive stimuli that are unfused, offset from the assumed zero ILD, or both. Thus, while current clinical mapping procedures for bilateral CIs are sufficient to enable many of the benefits of bilateral hearing, they may not elicit percepts that are thought to be optimal for sound-source location. As a result, in the absence of new developments in signal processing for CIs, new mapping procedures may need to be developed for bilateral CI recipients to maximize the benefits of bilateral hearing. This article was published in Ear Hear and referenced in Otolaryngology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version