alexa Binding and interstitial penetration of liposomes within avascular tumor spheroids.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Kostarelos K, Emfietzoglou D, Papakostas A, Yang WH, Ballangrud A,

Abstract Share this page

Abstract The liposomal delivery of cancer therapeutics, including gene therapy vectors, is an area of intense study. Poor penetration of liposomes into interstitial tumor spaces remains a problem, however. In this work, the penetration of different liposomal formulations into prostate carcinoma spheroids was examined. Spheroid penetration was assessed by confocal microscopy of fluorescently labeled liposomes. The impact of liposomal surface charge, mean diameter, lipid bilayer fluidity and fusogenicity on spheroid penetration was examined. A variety of different liposome systems relevant to clinical or preclinical protocols have been studied, including classical zwitterionic (DMPC:chol) and sterically stabilized liposomes (DMPC:chol:DOPE-PEG2000), both used clinically, and cationic liposomes (DMPC:DOPE:DC-chol and DOTAP), forming the basis of the vast majority of nonviral gene transfer vectors tested in various cancer trials. Surface interactions between strongly cationic vesicles and the tumor cells led to an electrostatically derived binding-site barrier effect, inhibiting further association of the delivery systems with the tumor spheroids (DMPC:DC-chol). However, inclusion of the fusogenic lipid DOPE and use of a cationic lipid of lower surface charge density (DOTAP instead of DC-chol) led to improvements in the observed intratumoral distribution characteristics. Sterically stabilized liposomes did not interact with the tumor spheroids, whereas small unilamellar classical liposomes exhibit extensive distribution deeper into the tumor volume. Engineering liposomal delivery systems with a relatively low charge molar ratio and enhanced fusogenicity, or electrostatically neutral liposomes with fluid bilayers, offered enhanced intratumoral penetration. This study shows that a delicate balance exists between the strong affinity of delivery systems for the tumor cells and the efficient penetration and distribution within the tumor mass, similar to previous work studying targeted delivery by ligand-receptor interactions of monoclonal antibodies. Structure-function relationships from the interaction of different liposome systems with 3-dimensional tumor spheroids can lead to construction of delivery systems able to target efficiently and penetrate deeper within the tumor interstitium and act as a screening tool for a variety of therapeutics against cancer. Copyright 2004 Wiley-Liss, Inc. This article was published in Int J Cancer and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords