alexa Binding of 2,6- and 2,7-dihydroxynaphthalene to wild-type and E-B13Q insulins: dynamic, equilibrium, and molecular modeling investigations.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Bloom CR, Heymann R, Kaarsholm NC, Dunn MF

Abstract Share this page

Abstract The binding of phenolic ligands to the insulin hexamer occurs as a cooperative allosteric process. Investigations of the allosteric mechanism from this laboratory resulted in the postulation of a model consisting of a three-state conformational equilibrium and the derivation of a mathematical expression to describe the insulin system. The proposed mechanism involves allosteric transitions among two states of high symmetry, designated T3T3' (a low affinity state) and R3R3' (a high affinity state), and a third state of lower symmetry, designated T3oR3o (a state of mixed low and high affinities). To further characterize this mechanism, we present rapid kinetic fluorescence studies, equilibrium binding isotherms, and molecular modeling investigations for the Co(II)-substituted wild-type and E-B13Q mutant hexamers. These studies show that the measured on and off rates (kon and koff) for the binding of the allosteric ligands 2,6- and 2,7-dihydroxynaphthalene provide an independent measure of the dissociation constant for binding to the T3oR3o conformation (KRo). These constants are in agreement with the value obtained by computer fitting of the equilibrium binding isotherms to the quantitative allosteric mechanism. We analyze the structural differences between the T3oR3o and R6 phenolic binding sites and predict the structures of the T3oR3o-2,6-DHN and R6-2, 6-DHN complexes by 3-D molecular modeling. Assignment of H-bonding of the first hydroxyl group to CysA6 and CysA11 has been supported by stacking interactions analogous to phenol using 1H-NMR. H-bonding of the second hydroxyl group of 2,6-DHN to the GluB13 carboxylate side chains is predicted by molecular modeling and is supported by a reduction of affinity for Ca2+, which is postulated to bind to the GluB13 side chains. This article was published in Biochemistry and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version