alexa Binding of the iminium and alkanolamine forms of sanguinarine to lysozyme: spectroscopic analysis, thermodynamics, and molecular modeling studies.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Jash C, Payghan PV, Ghoshal N, Suresh Kumar G

Abstract Share this page

Abstract Sanguinarine (SGR) exists in charged iminium (SGRI) and neutral alkanolamine (SGRA) forms. The binding of these two forms to the protein lysozyme (Lyz) was investigated by fluorescence, UV-vis absorbance and circular dichroism spectroscopy, and in silico molecular docking approaches. Binding thermodynamics were studied by microcalorimetry. Both forms of sanguinarine quenched the intrinsic fluorescence of Lyz, but the quenching efficiencies varied on the basis of binding that was derived after correction for an inner-filter effect. The equilibrium binding constants at 25 ± 1.0 °C for the iminium and alkanolamine forms were 1.17 × 10(5) and 3.32 × 10(5) M(-1), respectively, with approximately one binding site for both forms of the protein. Conformational changes of the protein in the presence of SGR were confirmed by absorbance, circular dichroism, three-dimensional fluorescence, and synchronous fluorescence spectroscopy. Microcalorimetry data revealed that SGRI binding is endothermic and predominantly involves electrostatic and hydrophobic interactions, whereas SGRA binding is exothermic and dominated by hydrogen-bonding interactions. The molecular distances (r) of 3.27 and 3.04 nm between the donor (Lyz) and the SGRI and SGRA acceptors, respectively, were calculated according to Förster's theory. These data suggested that both forms were bound near the Trp-62/63 residues of Lyz. Stronger binding of SGRA than SGRI was apparent from the results of both structural and thermodynamic experiments. Molecular docking studies revealed that the putative binding site for the SGR analogues resides at the catalytic site. The docking results are in accordance with the spectroscopic and thermodynamic data, further validating the stronger binding of SGRA over SGRI to Lyz. The binding site is situated near a deep crevice on the protein surface and is close to several crucial amino acid residues, including Asp-52, Glu-35, Trp-62, and Trp-63. This study advances our knowledge of the structural nature and thermodynamic aspects of binding between the putative anticancer alkaloid sanguinarine and lysozyme. This article was published in J Phys Chem B and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version