alexa Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach.
Microbiology

Microbiology

Mycobacterial Diseases

Author(s): Stigliani JL, Arnaud P, Delaine T, BernardesGnisson V, Meunier B,

Abstract Share this page

Abstract The front-line antituberculosis drug isoniazid (INH) inhibits InhA, the NADH-dependent fatty acid biosynthesis enoyl ACP-reductase from Mycobacterium tuberculosis, via formation of covalent adducts with NAD (INH-NAD adducts). While ring tautomers were found the main species formed in solution, only the 4S chain INH-NAD tautomer was evidenced in the crystallized InhA:INH-NAD complex. In this study we attempted to explore the modes of interaction and energy binding of the different isomers placed in the active site of InhA with the help of various molecular modelling techniques. Ligand and enzyme models were generated with the help of the Vega ZZ program package. Resulting ligands were then docked into the InhA active site individually using computational automated docking package AUTODOCK 3.0.5. The more relevant docked conformations were then used to compute the interaction energy between the ligands and the InhA cavity. The AM1 Hamiltonian and the QM/MM ONIOM methodologies were used and the results compared. The various tautomers were found docked in almost the same place where INH-NAD was present as predicted by earlier X-ray crystallographic studies. However, some changes of ligand conformation and of the interactions ligand-protein were evidenced. The lower binding energy was observed for the 4S chain adduct that probably represents the effective active form of the INH-NAD adducts, as compared to the 4R epimer. The two 4S,7R and 4R,7S ring tautomers show intermediate and similar binding energies contrasting with their different experimental inhibitory potency on InhA. As a possible explanation based on calculated conformations, we formulated the hypothesis of an initial binding of the two ring tautomers to InhA followed by opening of only the ring hemiamidal 4S,7R tautomer (possibly catalyzed by Tyr158 phenolate basic group) to give the 4S chain INH-NAD tight-binding inhibitor. The predictions of ligand-protein interactions at the molecular level can be of primary importance in elucidating the mechanisms of action of isoniazid and InhA-related resistances, in identifying the effective mycobactericidal entities and, in further step, in the design of a new generation of antitubercular drugs. This article was published in J Mol Graph Model and referenced in Mycobacterial Diseases

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords