alexa Bioavailability of nonextractable (bound) pesticide residues to earthworms.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Gevao B, Mordaunt C, Semple KT, Piearce TG, Jones KC

Abstract Share this page

Abstract There is an ongoing debate regarding whether nonextractable (bound) pesticide residues in soils are occluded or may remain bioavailable in the long term in the environment. This study investigated the release of 14C-labeled residues, which were previously nonextractable after exhaustive extraction with organic solvents in soils, and their uptake by earthworms (Aporrectodea longa). After a 100-day incubation of soils treated with 14C-labeled atrazine, isoproturon, and dicamba and exhaustive Soxhlet extractions with methanol and dichloromethane, nonextracted 14C-labeled residues remaining in the soils were 18, 70, and 67\%, respectively. Adding clean soil in the ratio of 7:1 increased the volumes of these extracted soils. After earthworms had lived in these previously extracted soils for 28 days, 0.02-0.2\% of previously bound 14C activity was absorbed into the earthworm tissue. Uptake by earthworms was found to be 2-10 times higher in soils containing freshly introduced 14C-labeled pesticides as compared to soils containing nonextractable 14C-labeled residues. The differential bioavailability observed between freshly introduced 14C-labeled pesticides and those previously nonextractable may be related to the ease of transfer of the 14C activity into the solution phase. By the end of the 28-day incubation period, 3, 23, and 24\% of previously nonextractable 14C-labeled isoproturon, dicamba, and atrazine residues, respectively, were extracted by solvents or mineralized to 14CO2. The amounts of 14C activity released were not significantly different in the presence or in the absence of earthworms in soils containing previously nonextractable residues. However, the formation of bound residues was 2, 2, and 4 times lower for freshly introduced 14C-labeled isoproturon, dicamba, and atrazine, respectively, suggesting that the presence of earthworms retarded bound residue formation.
This article was published in Environ Sci Technol and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Praveena T
    The structural and molecular insights into natural killer T cell receptor (NKT) and CD1d-glycolipid recognition
    PPT Version | PDF Version
  • Guijun Wang
    Design, Synthesis and Characterization of Glycolipids and Glycoclusters as Molecular Gelators
    PPT Version | PDF Version
  • Yung-Chih Kuo
    “Yung-Chih Kuo-National-Chung-Cheng-University-Republic-of-China-Targeting-delivery-of-etoposide-to-inhibit-the-growth-of-human-glioblastoma-multiforme-using-lactoferrin-and-folic-acid-grafted-poly(lactide-co-glycolide)-nanoparticles”
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version