alexa Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): ReyesCsar A, Absaln E, Fernndez FJ, Gonzlez JM, CortsEspinosa DV

Abstract Share this page

Abstract Nine native non-ligninolytic fungal strains were isolated from Maya crude oil-contaminated soil and selected based on their ability to grow and use crude oil and several polycyclic aromatic hydrocarbons (PAHs) as carbon source, for their application to PAH removal in soil. The fungi were identified by PCR amplification of intergenic transcribed sequences regions and microbiological techniques, and results showed them to be part of the genera Fusarium, Neurospora, Aspergillus, Scedosporium, Penicillium, Neosartorya and Talaromyces. A primary selection of fungi was made in minimal medium plates, considering the tolerance to different concentrations of PAHs for each strain. The radial extension rate exhibited significant differences (p < 0.05) from 200 to 1,000 mg of PAHs mixture l⁻¹. A secondary selection of Aspergillus terreus, Talaromyces spectabilis, and Fusarium sp. was achieved based on their tolerance to 2,000 mg of a mixture of Phenanathrene and Pyrene kg⁻¹ of soil in a solid-state microcosm system for 2 weeks. The percentage of PAH removal obtained by the three strains was approximately 21 \% of the mixture. This article was published in World J Microbiol Biotechnol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords