alexa Biodegradation of microbial and synthetic polyesters by fungi.
Environmental Sciences

Environmental Sciences

Journal of Pollution Effects & Control

Author(s): Kim DY, Rhee YH

Abstract Share this page

Abstract A variety of biodegradable polyesters have been developed in order to obtain useful biomaterials and to reduce the impact of environmental pollution caused by the large-scale accumulation of non-degradable waste plastics. Polyhydroxyalkanoates, poly(epsilon-caprolactone), poly( l-lactide), and both aliphatic and aromatic polyalkylene dicarboxylic acids are examples of biodegradable polyesters. In general, most aliphatic polyesters are readily mineralized by a number of aerobic and anaerobic microorganisms that are widely distributed in nature. However, aromatic polyesters are more resistant to microbial attack than aliphatic polyesters. The fungal biomass in soils generally exceeds the bacterial biomass and thus it is likely that fungi may play a considerable role in degrading polyesters, just as they predominantly perform the decomposition of organic matter in the soil ecosystem. However, in contrast to bacterial polyester degradation, which has been extensively investigated, the microbiological and environmental aspects of fungal degradation of polyesters are unclear. This review reports recent advances in our knowledge of the fungal degradation of microbial and synthetic polyesters and discusses the ecological importance and contribution of fungi in the biological recycling of waste polymeric materials in the biosphere. This article was published in Appl Microbiol Biotechnol and referenced in Journal of Pollution Effects & Control

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version