alexa Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1.


Bioenergetics: Open Access

Author(s): Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM

Abstract Share this page

Abstract The thermoalkaliphilic Bacillus sp. strain TA2.A1 was able to grow in pH-controlled batch culture containing a nonfermentable growth substrate from pH 7.5 to 10.0 with no significant change in its specific growth rate, demonstrating that this bacterium is a facultative alkaliphile. Growth at pH 10.0 was sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that a proton motive force (Deltap) generated via aerobic respiration was an obligate requirement for growth of strain TA2.A1. Strain TA2.A1 exhibited intracellular pH homeostasis as the external pH increased from 7.5 to 10.0; however, the maximum DeltapH generated over this pH range was only 1.1 units at an external pH of 9.5. The membrane potential (Deltapsi) was maintained between -114 mV and -150 mV, and little significant change was observed over the pH range for growth. In contrast, the Deltap declined from -164 mV at pH 7.5 to approximately -78 mV at pH 10.0. An inwardly directed sodium motive force (DeltapNa(+)) of -100 mV at pH 10.0 indicated that cellular processes (i.e., solute transport) dependent on a sodium gradient would not be affected by the adverse Deltap. The phosphorylation potential of strain TA2.A1 was maintained between -300 mV and -418 mV, and the calculated H(+)/ATP stoichiometry of the ATP synthase increased from 2.0 at pH 7.5 to 5.7 at pH 10.0. Based on these data, vigorous growth of strain TA2.A1 correlated well with the DeltapNa(+), phosphorylation potential, and the ATP/ADP ratio, but not with Deltap. This communication represents the first report on the bioenergetics of an extremely thermoalkaliphilic aerobic bacterium.
This article was published in J Bacteriol and referenced in Bioenergetics: Open Access

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version