alexa Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Kumara MT, Srividya N, Muralidharan S, Tripp BC

Abstract Share this page

Abstract An E. coli flagellin protein, termed FliTrx, was investigated for use as a novel form of self-assembling protein nanotube. This protein was genetically engineered to display constrained peptide loops with a series of different thiol, cationic, anionic, and imidazole functional groups. "Cys-loop" thiol variants consisting of 6 and 12 cysteine residues were isolated in the form of disulfide-linked nanotube bundles, a novel nanomaterial. Bundles were characterized by fluorescence microscopy, transmission electron microscopy, and optical trapping. This article was published in Nano Lett and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords