alexa Biofilm bacteria: formation and comparative susceptibility to antibiotics
Microbiology

Microbiology

Clinical Microbiology: Open Access

Author(s): Merle E Olson, Howard Ceri, Douglas W Morck, Andre G Buret, Ronald R Read

Abstract Share this page

The Calgary Biofilm Device (CBD) was used to form bacterial biofilms of selected veterinary gram-negative and gram-positive pathogenic bacteria from cattle, sheep, pigs, chicken, and turkeys. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of ampicillin, ceftiofur, cloxacillin, oxytetracycline, penicillin G, streptomycin, tetracycline, enrofloxacin, erythromycin, gentamicin, tilmicosin, and trimethoprim-sulfadoxine for gram-positive and -negative bacteria were determined. Bacterial biofilms were readily formed on the CBD under selected conditions. The biofilms consisted of micro-colonies encased in extracellular polysaccharide material. Biofilms composed of Arcanobacterium (Actinomyces) pyogenes, Staphylococcus aureus, Staphylococcus hyicus, Streptococcus agalactiae, Corynebacterium renale, or Corynebacterium pseudotuberculosis were not killed by the antibiotics tested but as planktonic bacteria they were sensitive at low concentrations. Biofilm and planktonic Streptococcus dysgalactiae and Streptococcus suis were sensitive to penicillin, ceftiofur, cloxacillin, ampicillin, and oxytetracycline. Planktonic Escherichia coli were sensitive to enrofloxacin, gentamicin, oxytetracycline and trimethoprim/ sulfadoxine. Enrofloxacin and gentamicin were the most effective antibiotics against E. coli growing as a biofilm. Salmonella spp. and Pseudomonas aeruginosa isolates growing as planktonic populations were sensitive to enrofloxacin, gentamicin, ampicillin, oxytetracycline, and trimethoprim/sulfadoxine, but as a biofilm, these bacteria were only sensitive to enrofloxacin. Planktonic and biofilm Pasteurella multocida and Mannheimia haemolytica had similar antibiotic sensitivity profiles and were sensitive to most of the antibiotics tested. The CBD provides a valuable new technology that can be used to select antibiotics that are able to kill bacteria growing as biofilms.

  • To read the full article Visit
  • Open Access
This article was published in Can J Vet Res and referenced in Clinical Microbiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords