alexa Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene.
Environmental Sciences

Environmental Sciences

Journal of Pollution Effects & Control

Author(s): Mor R, Sivan A

Abstract Share this page

Abstract Polystyrene, which is one of the most utilized thermoplastics, is highly durable and is considered to be non-biodegradable. Hence, polystyrene waste accumulates in the environment posing an increasing ecological threat. In a previous study we have isolated a biofilm-producing strain (C208) of the actinomycete Rhodococcus ruber that degraded polyethylene films. Formation of biofilm, by C208, improved the biodegradation of polyethylene. Consequently, the present study aimed at monitoring the kinetics of biofilm formation by C208 on polystyrene, determining the physiological activity of the biofilm and analyzing its capacity to degrade polystyrene. Quantification of the biofilm biomass was performed using a modified crystal violet (CV) staining or by monitoring the protein content in the biofilm. When cultured on polystyrene flakes, most of the bacterial cells adhered to the polystyrene surface within few hours, forming a biofilm. The growth of the on polystyrene showed a pattern similar to that of a planktonic culture. Furthermore, the respiration rate, of the biofilm, exhibited a pattern similar to that of the biofilm growth. In contrast, the respiration activity of the planktonic population showed a constant decline with time. Addition of mineral oil (0.005\% w/v), but not non-ionic surfactants, increased the biofilm biomass. Extended incubation of the biofilm for up to 8 weeks resulted in a small reduction in the polystyrene weight (0.8\% of gravimetric weight loss). This study demonstrates the high affinity of C208 to polystyrene which lead to biofilm formation and, presumably, induced partial biodegradation. This article was published in Biodegradation and referenced in Journal of Pollution Effects & Control

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords