alexa Biological costs and mechanisms of fosfomycin resistance in Escherichia coli.
Biochemistry

Biochemistry

Bioenergetics: Open Access

Author(s): Nilsson AI, Berg OG, Aspevall O, Kahlmeter G, Andersson DI

Abstract Share this page

Abstract Fosfomycin is a cell wall inhibitor used mainly for the treatment of uncomplicated lower urinary tract infections. As shown here, resistance to fosfomycin develops rapidly in Escherichia coli under experimental conditions, but in spite of the relatively high mutation rate in vitro, resistance in clinical isolates is rare. To examine this apparent contradiction, we mathematically modeled the probability of resistance development in the bladder during treatment. The modeling showed that during a typical episode of urinary tract infection, the probability of resistance development was high (>10(-2)). However, if resistance was associated with a reduction in growth rate, the probability of resistance development rapidly decreased. To examine if fosfomycin resistance causes a reduced growth rate, we isolated in vitro and in vivo a set of resistant strains. We determined their resistance mechanisms and examined the effect of the different resistance mutations on bacterial growth in the absence and presence of fosfomycin. The types of mutations found in vitro and in vivo were partly different. Resistance in the mutants isolated in vitro was caused by ptsI, cyaA, glpT, uhpA/T, and unknown mutations, whereas no cyaA or ptsI mutants could be found in vivo. All mutations caused a decreased growth rate both in laboratory medium and in urine, irrespective of the absence or presence of fosfomycin. According to the mathematical model, the reduced growth rate of the resistant strains will prevent them from establishing in the bladder, which could explain why fosfomycin resistance remains rare in clinical isolates.
This article was published in Antimicrob Agents Chemother and referenced in Bioenergetics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_mic[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords