alexa Biological impact of natural COOH-terminal deletions of hepatitis B virus X protein in hepatocellular carcinoma tissues.
Pathology

Pathology

Journal of Clinical & Experimental Pathology

Author(s): Tu H, Bonura C, Giannini C, Mouly H, Soussan P,

Abstract Share this page

Abstract The hepatitis B virus (HBV) X protein (HBx) is a transcriptional transactivator that has been implicated in the development of HBV-related hepatocellular carcinoma. Mutations in the HBx open reading frame have been reported, but their general impact on the biological function of HBx remains unknown. To address this issue, we comparatively analyzed the structures and biological functions of HBx sequences isolated from sera and from tumor and nontumor tissues of patients with a HBV-related hepatocellular carcinoma. In addition to the HBx sequences derived from free HBV genomes, HBx from HBV integrants was also obtained from the tumor tissues by use of a HBx-Alu PCR-based approach. Sequence analysis showed that the HBx sequences derived from tumor tissues (6 of 7), particularly those isolated from HBV integrants (4 of 4), contained a deletion in the distal COOH-terminal region. Interestingly, most of the COOH-terminally truncated HBx sequences obtained from tumor tissues, in contrast to the full-length HBx isolated from the sera and nontumor tissues, lost their transcriptional activity and their inhibitory effects on cell proliferation and transformation. Importantly, although full-length HBx suppressed the focus formation induced by the cooperation of ras and myc oncogenes in primary rat embryo fibroblasts, COOH-terminally truncated HBx enhanced the transforming ability of ras and myc. Finally, by analyzing the artificial mutants, we were able to more precisely map the functional domains located at the COOH-terminal of HBx. Taken together, our results suggest a key role for the HBx COOH-terminal end in controlling cell proliferation, viability, and transformation. This study further supports the hypothesis that natural HBx mutants might be selected in tumor tissues and play a role in hepatocarcinogenesis by modifying the biological functions of HBx.
This article was published in Cancer Res and referenced in Journal of Clinical & Experimental Pathology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]ne.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords