alexa Biological mediators for periodontal regeneration.
Biomedical Sciences

Biomedical Sciences

Biology and Medicine

Author(s): Cochran DL, Wozney JM

Abstract Share this page

Abstract A review of the literature on the use of growth-regulatory molecules in the oral cavity permits a model in which to consider approaches to oral tissue engineering. These concepts apply to periodontal regeneration and to regeneration of alveolar bone. In either case, the formation of tissues is complex but proceeds in a deliberate and orderly sequence. In these sequence of events resulting in either bone or cementum formation, periodontal ligament and bone can be stimulated at various points. Different signals can apparently be used to stimulate tissue formation including mitogenic signals and differentiation factors. Additionally, both hard and soft tissue stimulatory molecules appear to be permissive. Classic receptor-mediated peptides or extracellular matrix molecules for soft and hard tissues appear to allow stimulation of tissue formation cascades. Importantly, it also appears that the stimulatory event is transitory (that is, short-lived) and leads itself to a sequence of cellular events. These cellular events in turn stimulate a number of subsequent events (such as chemotaxis, proliferation, differentiation or angiogenesis), which lead to further progression of tissue formation. While a solid scientific rationale exists for the use of a variety of growth and attachment factors in regeneration of oral tissues, only a small number are being pursued clinically. Many therapeutic regimens have failed in preclinical testing or have resulted in limited regenerative capacity. The mitogenic polypeptides that stimulate soft tissue growth (such as platelet-derived growth factor) and both hard and soft tissue growth (such as transforming growth factor-beta) appear to have not led to successful enough outcomes to facilitate further work towards regulatory approval. The demonstrated ability of bone morphogenetic proteins to generate substantial quantities of bone suggest many applications in the oral cavity where this is the only tissue desired. Another therapeutic candidate is enamel matrix derivative, a set of matrix proteins. Enamel matrix derivative appears to stimulate first acellular cementum formation, which may allow for functional periodontal ligament formation. It will be of interest in the future to determine whether the protein matrix contains classic mitogenic or differentiation factors as well as the amelogenins. It is also evident that the bone morphogenetic proteins permit periodontal ligament formation. The conditions for stimulating predictable periodontal ligament tissues with bone morphogenetic proteins however are not known. It is clear that the bone morphogenetic proteins are excellent molecules for stimulating oral bone formation. The results of all these studies will determine the future therapeutic potential for these growth molecules such that they may be used to optimally stimulate and direct specific points along tissue formation cascades.
This article was published in Periodontol 2000 and referenced in Biology and Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords