alexa Biology and ecology of the hydrocoral millepora on coral reefs.


Journal of Environmental & Analytical Toxicology

Author(s): Lewis JB

Abstract Share this page

Abstract Millepores are colonial polypoidal hydrozoans secreting an internal calcareous skeleton of an encrusting or upright form, often of considerable size. Defensive polyps protruding from the skeleton are numerous and highly toxic and for this reason millepores are popularly known as "stinging corals" or "fire corals." In shallow tropical seas millepore colonies are conspicuous on coral reefs and may be locally abundant and important reef-framework builders. The history of systematic research on the Milleporidae and the sister family Stylasteridae is rich and full with the works of early naturalists beginning with Linnaeus. Seventeen living millepore species are recognised. Marked phenotypic variation in form and structure of colonies is characteristic of the genus Millepora. The first published descriptions of the anatomy and histology of millepores were by H. N. Moseley in one of the Challenger Expedition reports. These original, detailed accounts by Moseley remain valid and, except for recent descriptions of the ultrastructure of the skeleton and skeletogenic tissues, have not needed much modification. Millepores occur worldwide on coral reefs at depths of between 1 and 40 m and their distribution on reefs is generally zoned in response to physical factors. Colonies may be abundant locally on coral reefs but usually comprise <10\% of the overall surface cover. Growth rates of colonies are similar to the measured rates of branching and platelike scleractinian corals. Millepores are voracious zooplankton feeders and they obtain part of their nutrition from autotrophic sources, photosynthetic production by symbiotic zooxanthellae. Reproduction in millepores is characterised by alternation of generations with a well-developed polypoid stage that buds off planktonic medusae. Sexual reproduction is seasonal for known species and the medusae have a brief planktonic life. Asexual production is achieved by sympodial growth, the production of new skeleton and soft tissue along a growing edge or branch tip, and by the reattachment, regeneration and repair of damaged or broken colony fragments. The physiological and ecological responses of species of millepores are similar to those of the species of scleractinian corals over a broad range of natural and anthropogenic disturbances. Severe damage to colonies may occur during major storms. Delicately branching species are more susceptible than massive and bladed species. The ability of broken fragments to regenerate can ameliorate the extent of damage. Widespread bleaching and mortality of millepores has been reported during mass bleaching events that have affected many coral reefs. Millepores are often the first to recover after short-term bleaching events. Harmful effects of oil spills, chronic oil pollution and oil-spill detergents have been widely reported for millepores. Although the hydrozoan coenosarc, with its fiercely stinging zooids, does not appear to be an attractive substratum for attachment and settlement of epizooans, a number of sessile and errant forms commonly occur on millepores. These include barnacles, amphipods, tanaid and alpheid crustaceans, polychaetes and gastropods. Burrowing molluscs, polychaetes and crustacea also abound. Many of these species or their close relatives also occur on scleractinian corals. A variety of predators, grazers and fouling organisms occur on millepores. These include errant polychaetes, several coral-feeding fish and a gastropod mollusc. Various invasive green, red and brown algae are widespread, growing on dead branches of millepores and overgrowing live coral tissue. Various "band diseases" associated with microorganisms that appear to cause lesions on millepores and loss of tissue have been documented but are not of widespread occurrence. Infestations of endolithic algae and fungi growing within the skeletons have been reported in a number of millepore species. This article was published in Adv Mar Biol and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version