alexa Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Giri AK, Patel RK, Mahapatra SS, Mishra PC

Abstract Share this page

Abstract In this work, removal of arsenic (III) from aqueous solution by living cells (Bacillus cereus), biosorption mechanism, and characterization studies have been reported. B. cereus cell surface was characterized using SEM-EDX and FTIR. Dependence of biosorption on pH of the solution, biosorbent dose, initial arsenic (III) concentration, contact time, and temperature had been studied to achieve optimum condition. The maximum biosorption capacity of living cells of B. cereus for arsenic (III) was found to be 32.42 mg/g at pH 7.5, at optimum conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. Biosorption data of arsenic (III) are fitted to linearly transformed Langmuir isotherm with R (2) (correlation coefficient) >0.99. The pseudo-second-order model description of the kinetics of arsenic (III) is successfully applied to predict the rate constant of biosorption. Thermodynamic parameters reveal the endothermic, spontaneous, and feasible nature of sorption process of arsenic (III) onto B. cereus biomass. The arsenic (III) ions are desorbed from B. cereus using both 1 M HCl and 1 M HNO(3). This article was published in Environ Sci Pollut Res Int and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version