alexa Biotransformation of aflatoxin B1 in human lung.
Immunology

Immunology

Immunome Research

Author(s): Donnelly PJ, Stewart RK, Ali SL, Conlan AA, Reid KR

Abstract Share this page

In addition to being a potent hepatocarcinogen, aflatoxin B1 (AFB1) is a pulmonary carcinogen in experimental animals, and epidemiological studies have shown an association between AFB1 exposure and lung cancer in humans. This study investigated AFB1 bioactivation and detoxification in human lung tissue obtained from patients undergoing clinically indicated lobectomy. [3H]AFB1 was bioactivated to a DNA binding metabolite by human whole lung cytosols in a time-, protein concentration-, and AFB1 concentration-dependent manner. Cytosolic activation of [3H]AFB1 correlated with lipoxygenase (LOX) activity and was inhibited by the LOX inhibitor nordihydroguaiaretic acid (NDGA; 100 microM), indicating that LOXs were largely responsible for the observed cytosolic activation of AFB1. In whole lung microsomes, low levels of indomethacin inhibitable prostaglandin H synthase (PHS)-mediated [3H]AFB1-DNA binding and cytochrome P-450 (P450)-mediated [3H]AFB1-DNA binding were observed. Cytosolic glutathione S-transferase (GST)-catalyzed detoxification of AFB1-8,9-epoxide, produced by rabbit liver microsomes, was minimal at 1 and 10 microM [3H]AFB1. With 100 microM [3H]AFB1, [3H]AFB1-8,9-epoxide conjugation with reduced glutathione was 0.34 +/- 0.26 pmol/mg/h (n = 10). In intact, isolated human lung cells, [3H]AFB1 binding to cellular DNA was higher in cell fractions enriched in macrophages than in either type II cell-enriched fractions or fractions containing unseparated cell types. Indomethacin produced a 63-100% decrease in [3H]AFB1-DNA binding in macrophages from five of seven patients, while NDGA inhibited [3H]AFB1-DNA adduct formation by 19, 40 and 56% in macrophages from three of seven patients. In alveolar type II cells, NDGA decreased [3H]AFB1-DNA binding by 30-100% in cells from three patients and indomethacin had little effect. SKF525A, an isozyme non-selective P450 inhibitor, enhanced [3H]AFB1 binding to cellular DNA in unseparated cells, macrophages, and type II cells, suggesting that P450-mediated bioactivation of AFB1 is not a major pathway by which AFB1-8,9-epoxide is formed in human lung cells. Overall, these studies suggest that P450 has a minor role in the bioactivation of AFB1 in human lung. Rather, LOXs and PHS appear to be important bioactivation enzymes. Co-oxidative bioactivation of AFB1, in combination with the low conjugating activity displayed by human lung cytosolic GSTs, likely contributes to human pulmonary susceptibility to AFB1.

This article was published in Carcinogenesis. and referenced in Immunome Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords