alexa Bleach activates a redox-regulated chaperone by oxidative protein unfolding.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Winter J, Ilbert M, Graf PC, Ozcelik D, Jakob U

Abstract Share this page

Abstract Hypochlorous acid (HOCl), the active ingredient in household bleach, is an effective antimicrobial produced by the mammalian host defense to kill invading microorganisms. Despite the widespread use of HOCl, surprisingly little is known about its mode of action. In this study, we demonstrate that low molar ratios of HOCl to protein cause oxidative protein unfolding in vitro and target thermolabile proteins for irreversible aggregation in vivo. As a defense mechanism, bacteria use the redox-regulated chaperone Hsp33, which responds to bleach treatment with the reversible oxidative unfolding of its C-terminal redox switch domain. HOCl-mediated unfolding turns inactive Hsp33 into a highly active chaperone holdase, which protects essential Escherichia coli proteins against HOCl-induced aggregation and increases bacterial HOCl resistance. Our results substantially improve our molecular understanding about HOCl's functional mechanism. They suggest that the antimicrobial effects of bleach are largely based on HOCl's ability to cause aggregation of essential bacterial proteins.
This article was published in Cell and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version