alexa Blue light induced apoptosis in rat retina.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Wu J, Seregard S, Spngberg B, Oskarsson M, Chen E

Abstract Share this page

Abstract PURPOSE: To explore cell death in blue light induced retinal damage. METHODS: Sprague-Dawley rats reared under cyclic light were exposed continuously to diffuse blue light (400-480 nm) at 0.64 W/m2 for 3 or 6 h after 22 h of dark adaptation. The rats were kept in darkness and killed immediately, 8, 16 and 24 h following light exposure. The retinal damage by the blue light was examined with a transmission electron microscope. The cell death was characterised by in situ terminal dUTP nick end labelling (TUNEL) and gel electrophoresis. RESULTS: During the 24 h following light exposure, photoreceptor cell death was characterised by progressive condensation and margination of the chromatin, shrinkage or convolution and fragmentation of the nucleus, condensation of the cytoplasm, and formation of apoptotic bodies along with rapid removal of dying cells from damaged areas in the absence of inflammatory response. The TUNEL-positive nuclei were scattered individually in the outer nuclear layer just after light exposure. A wave of massive TUNEL labelling of photoreceptor nuclei peaked at 8-16 h and dropped at 24 h following light exposure. The distribution of TUNEL-positive nuclei was located predominantly at the upper temporal region of the retina, which was the most sensitive area to the damage caused by blue light. Furthermore, the multiples of internucleosomal cleavage of 180-200 base pairs were demonstrated at corresponding time points. CONCLUSION: Photoreceptor cell apoptosis is seen early after the retina is damaged by blue light. This article was published in Eye (Lond) and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version