alexa BMP-6 inhibits microRNA-21 expression in breast cancer through repressing deltaEF1 and AP-1.
Oncology

Oncology

Journal of Carcinogenesis & Mutagenesis

Author(s): Du J, Yang S, An D, Hu F, Yuan W,

Abstract Share this page

Abstract MicroRNAs (miRNAs), which are small noncoding RNA molecules, play important roles in the post-transcriptional regulation process. The microRNA-21 gene (miR-21) has been reported to be highly expressed in various solid tumors, including breast cancer. Bone morphogenetic protein-6 (BMP-6) has been identified as an inhibitor of breast cancer epithelial-mesenchymal transition (EMT) through rescuing E-cadherin expression. We initiated experiments to identify the relationships between miR-21 and BMP-6 in breast cancer progression. Real-time PCR analysis showed that miR-21 expression was very high in MDA-MB-231 cells that expressed little BMP-6. A reverse correlation between BMP-6 and miR-21 was also determined in breast cancer tissue samples. Moreover, BMP-6 inhibited miR-21 transcription in MDA-MB-231 cells. In order to investigate how BMP-6 inhibited the miR-21 promoter (miPPR-21), we constructed a series of miPPR-21 reporters. Luciferase assay results indicated that BMP-6 inhibited miPPR-21 activity through the E2-box and AP-1-binding sites. We also demonstrated that both deltaEF1 and TPA induced miR-21 expression. Using site-directed mutation and CHIP assay, we found that deltaEF1 induced miPPR-21 activity by binding to the E2-box on miPPR-21. Moreover, TPA triggered miPPR-21 activity through the AP-1 binding sites. BMP-6 treatment significantly reduced the binding of these factors to miPPR-21 by decreasing the expression of deltaEF1 and c-Fos/c-Jun. We also demonstrated that BMP-6-induced downregulation of miR-21 modified the activity of PDCD4 3'UTR and inhibited MDA-MB-231 cell invasion. deltaEF1 overexpression and TPA induction blocked this inhibitory effect of BMP-6. In conclusion, BMP-6-induced inhibition of miR-21 suggests that BMP-6 may function as an anti-metastasis factor by a mechanism involving transcriptional repression of miR-21 in breast cancer. This article was published in Cell Res and referenced in Journal of Carcinogenesis & Mutagenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords