alexa Bone marrow regeneration after local injury: a review.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Patt HM, Maloney MA

Abstract Share this page

Abstract This paper is focused on a mechanically depleted medullary cavity as an experimental model for analysis of marrow regenerative programs. The reconstitution of marrow in an evacuated cavity is basically a local phenomenon in respect to the stimulus for regeneration and the origin of the responsible cells. The nature of the triggering stimulus is unknown, but it is probably related to disruption of the continuity of the marrow stroma and endosteum. The initiating cells appear to be independent lines of mesenchymal and hematopoietic stem cells bound to bone, most likely within the endosteum and haversian system. The mesenchymal cells form the characteristic marrow stroma. Hemic cell regeneration can occur without immigrant hematopoietic stem cells, although such cells are known to contribute to later stages of repopulation. The formation and resorption of trabecular bone appears to be intimately related to the development of a sinusoidal matrix, perhaps by serving as a callus or supporting lattice and perhaps by providing a mechanism for distribution of stromal progenitors. Hematopoiesis is initiated in sites of active bone resorptive. The interplay of events consequent to marrow removal is strikingly similar to that seen with heterotopic marrow implants. Because stromal stem cells, unlike hematopoietic stem cells, do not migrate from distant sites, marrow stroma is the limiting factor in recovery from localized injury. Stromal stem cells are fairly radiosensitive but are not as sensitive as hematopoietic stem cells. The apparent radioresistance of stromal elements in an intact marrow seems to be due to their very low turnover rate. Latent radiation damage can be readily unmasked by conditions that promote their proliferation. This no doubt accounts for the radiosensitivity of stroma in an evacuated femur or heterotopic implant in contrast to its continued functional integrity with similar irradiation of in situ marrow. Even in an intact marrow, however, exposures in the 1000 rad range can lead to slowly evolving hypocellularity associated with diminished blood flow. With higher doses, aplasia of the irradiated site becomes progressively more generalized. It remains to be seen whether this limiting condition is due to the loss of specific regulatory functions or stromal components or merely reflects sinusoidal damage.
This article was published in Exp Hematol and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]micsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords