alexa Boundary Solutions of the Classical Yang--Baxter Equation


Journal of Generalized Lie Theory and Applications

Author(s): M Gerstenhaber

Abstract Share this page

We define a new class of unitary solutions to the classical Yang--Baxter equation (CYBE). These ‘boundary solutions’ are those which lie in the closure of the space of unitary solutions of the modified classical Yang--Baxter equation (MCYBE). Using the Belavin--Drinfel'd classification of the solutions to the MCYBE, we are able to exhibit new families of solutions to the CYBE. In particular, using the Cremmer--Gervais solution to the MCYBE, we explicitly construct for all n ≥ 3 a boundary solution based on the maximal parabolic subalgebra of sl(n) obtained by deleting the first negative root. We give some evidence for a generalization of this result pertaining to other maximal parabolic subalgebras whose omitted root is relatively prime to n. We also give examples of nonboundary solutions for the classical simple Lie algebras.

This article was published in Letters in Mathematical Physics and referenced in Journal of Generalized Lie Theory and Applications

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version