alexa Bulk Raman analysis of pharmaceutical tablets.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Matousek P, Parker AW

Abstract Share this page

Abstract We compare and contrast two Raman collection geometries, backscattering and transmission, to identify their potential for monitoring the bulk chemical composition of turbid media. The experiments performed on pharmaceutical tablets confirm the expected strong bias of the backscattering Raman collection towards surface layers of the probed sample. However, this bias is largely absent with the transmission geometry, exhibiting gross insensitivity to the depth of impurities within the sample. The results are supported by Monte-Carlo simulations. The applicability of transmission geometry to tablets without any thinning is possible because of long migration times of Raman photons in non-absorbing powder media. The absolute measured intensity of the Raman signal was only 12 times lower in transmission geometry compared with backscattering geometry for a standard paracetamol tablet with a thickness of 3.9 mm. This makes detection relatively straightforward, and detectable Raman signals were observed even after propagation through three paracetamol tablets. Given its properties and instrumental simplicity, the transmission method is particularly well suited to the on-line analysis of bulk content of tablets in pharmaceutical applications. This article was published in Appl Spectrosc and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords