alexa Burn severity influences postfire CO2 exchange in arctic tundra.
Geology & Earth Science

Geology & Earth Science

Journal of Remote Sensing & GIS

Author(s): Rocha AV, Shaver GR

Abstract Share this page

Abstract Burned landscapes present several challenges to quantifying landscape carbon balance. Fire scars are composed of a mosaic of patches that differ in burn severity, which may influence postfire carbon budgets through damage to vegetation and carbon stocks. We deployed three eddy covariance towers along a burn severity gradient (i.e., severely burned, moderately burned, and unburned tundra) to monitor postfire net ecosystem exchange of CO2 (NEE) within the large 2007 Anaktuvuk River fire scar in Alaska, USA, during the summer of 2008. Remote sensing data from the MODerate resolution Imaging Spectroradiometer (MODIS) was used to assess the spatial representativeness of the tower sites and parameterize a NEE model that was used to scale tower measurements to the landscape. The tower sites had similar vegetation and reflectance properties prior to the Anaktuvuk River fire and represented the range of surface conditions observed within the fire scar during the 2008 summer. Burn severity influenced a variety of surface properties, including residual organic matter, plant mortality, and vegetation recovery, which in turn determined postfire NEE. Carbon sequestration decreased with increased burn severity and was largely controlled by decreases in canopy photosynthesis. The MODIS two-band enhanced vegetation index (EVI2) monitored the seasonal course of surface greenness and explained 86\% of the variability in NEE across the burn severity gradient. We demonstrate that understanding the relationship between burn severity, surface reflectance, and NEE is critical for estimating the overall postfire carbon balance of the Anaktuvuk River fire scar.
This article was published in Ecol Appl and referenced in Journal of Remote Sensing & GIS

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords