alexa Ca(2+) regulation of gap junctional coupling in lens epithelial cells.


Journal of Clinical & Experimental Ophthalmology

Author(s): Churchill GC, Lurtz MM, Louis CF

Abstract Share this page

Abstract The quantitative effects of Ca(2+) signaling on gap junctional coupling in lens epithelial cells have been determined using either the spread of Mn(2+) that is imaged by its ability to quench the fluorescence of fura 2 or the spread of the fluorescent dye Alexa Fluor 594. Gap junctional coupling was unaffected by a mechanically stimulated cell-to-cell Ca(2+) wave. Furthermore, when cytosolic Ca(2+) concentration (Ca) increased after the addition of the agonist ATP, coupling was unaffected during the period that Ca was maximal. However, coupling decreased transiently approximately 5-10 min after agonist addition when Ca returned to resting levels, indicating that this transient decrease in coupling was unlikely due to a direct action of Ca on gap junctions. An increase in Ca mediated by the ionophore ionomycin that was sustained for several minutes resulted in a more rapid and sustained decrease in coupling (IC(50) ~300 nM Ca(2+), Hill coefficient of 4), indicating that an increase in Ca alone could regulate gap junctions. Thus Ca increases that occurred during agonist stimulation and cell-to-cell Ca(2+) waves were too transient to mediate a sustained uncoupling of lens epithelial cells.
This article was published in Am J Physiol Cell Physiol and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version