alexa Ca2+ signalling early in evolution--all but primitive.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Plattner H, Verkhratsky A

Abstract Share this page

Abstract Early in evolution, Ca(2+) emerged as the most important second messenger for regulating widely different cellular functions. In eukaryotic cells Ca(2+) signals originate from several sources, i.e. influx from the outside medium, release from internal stores or from both. In mammalian cells, Ca(2+)-release channels represented by inositol 1,4,5-trisphosphate receptors and ryanodine receptors (InsP3R and RyR, respectively) are the most important. In unicellular organisms and plants, these channels are characterised with much less precision. In the ciliated protozoan, Paramecium tetraurelia, 34 molecularly distinct Ca(2+)-release channels that can be grouped in six subfamilies, based on criteria such as domain structure, pore, selectivity filter and activation mechanism have been identified. Some of these channels are genuine InsP3Rs and some are related to RyRs. Others show some--but not all--features that are characteristic for one or the other type of release channel. Localisation and gene silencing experiments revealed widely different--yet distinct--localisation, activation and functional engagement of the different Ca(2+)-release channels. Here, we shall discuss early evolutionary routes of Ca(2+)-release machinery in protozoa and demonstrate that detailed domain analyses and scrutinised functional analyses are instrumental for in-depth evolutionary mapping of Ca(2+)-release channels in unicellular organisms. This article was published in J Cell Sci and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords