alexa Caco-2 versus Caco-2 HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Hilgendorf C, SpahnLangguth H, Regrdh CG, Lipka E, Amidon GL,

Abstract Share this page

Abstract PURPOSE: The objective of this study was a systematic characterization and evaluation of cell culture models based on mixtures of Caco-2/HT29-MTX co-cultures for their use in screening for drug absorption and intestinal permeability in comparison to the properties of the respective mono-cultures. METHODS: Co-cultures of Caco-2 cells (absorptive-type) and HT29-MTX cells (goblet-type) were set up. Three different co-cultures (initial seeding ratios Caco-2/HT29-MTX: 90/10, 70/30, and 50/50) were grown on permeable filter supports, and monolayers were used for permeability studies with model compounds for paracellular absorption (atenolol, furosemide, H334/75, mannitol, terbutaline), transcellular absorption (antipyrine, ketoprofen, metoprolol, piroxicam), carrier-mediated absorption (D-glucose, Gly-Pro, and L-phenylalanine) as well as substrates for carrier-mediated secretion via P-glycoprotein (cimetidine and talinolol). Electrophysiological and microscopic controls were performed to characterize the cell cultures. RESULTS: For compounds undergoing passive intestinal absorption permeabilities were generally higher in co-cultures than in Caco-2 monolayers, yielding highest values in pure HT29-MTX monolayers. This difference was most obvious for compounds transported via the paracellular pathway, where HT29-MTX cells may be up to 30 times more permeable than Caco-2 cells, whereas for lipophilic and highly permeable compounds, the difference in permeability values was less obvious. For drugs undergoing intestinal secretion mediated by P-glycoprotein, co-cultivation of Caco-2 cells with HT29-MTX cells led to increased apical to basolateral permeability which was decreased in the opposite direction, consistent with the fact that HT29-MTX cells do not express P-glycoprotein. When a carrier-mediated absorption mechanism is involved, the permeabilities observed were lower than the values reported for human small intestine and co-cultivation of HT29-MTX cells with Caco-2 cells resulted in even lower values as compared to the plain Caco-2 cultures. CONCLUSIONS: Co-cultures of HT29-MTX and Caco-2 cells offer the opportunity of modifying the permeability barrier of the cell monolayers both with respect to paracellular resistance and secretory transport via P-gp. Thus, in special cases, they allow more flexibility in adapting the in vitro system to the in vivo situation as compared to the monocultures. Another advantage is the obvious robustness of the method with respect to the reproducibility of the results. A problem remaining, however, is the quantitative expression of carriers involved in intestinal uptake of many nutrients and drugs. Copyright 2000 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 89: 63-75, 2000 This article was published in J Pharm Sci and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords